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Integral transform solution of Luikov’s equations 
for heat and mass transfer in capillary porous media 
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EE/COPPE/UFRJ-Cidade Universltiria, Cx. Postal 68503, Rio de Janeiro, RJ. 21945-970, Brazil 

Abstract-The Luikov system of equations for coupled heat and mass transfer within capillary porous 
bodies is analytically handled through application of the generalized integral transform technique. The 
problem of temperature and moisture distribution during contact drying of a moist porous sheet is 
considered to illustrate the development of the present approach. The classical coupled auxiliary problem 
with the related complex eigenvalues is completely avoided and. instead, two decoupled eigenvalue problems 
for temperature and moisture are chosen, which are of the conventional Sturm-Liouville type. A set of 
benchmark results is generated and critically compared with previously reported approximate solutions. 

INTRODUCTION 

THE SO-CALLHI Luikov’s equations provide a well- 

established model for the analysis of various sim- 

ultaneous heat and mass diffusion problems in capil- 
lary porous media, and have been reviewed in different 
sources [IA]. Pertinent applications include the dry- 
ing of wood, ceramics and bricks, moisture migration 
in soils. and the analysis of heat pipe wicks. In the 

cast of a linear formulation for constant transport 
coefficients. analytical solutions were proposed over 
the years. based on both the Laplacc transform 
method [2, 51 and the classical integral transform 
method [6-81. It was later observed that the numerical 
results obtained through such analysis could be in 

error. due to the existence of complex eigenvalues in 
the associated coupled auxiliary problem [9, lo]. 
Then. quite recently, the effects of including one pair 
of complex conjugate eigenvalues in the analytical 

infinite summations was critically investigated [lo. 
I I]. Specially for shorter times, the need for con- 
sidering the complex eigenvalues is crucial, since even 
the qualitative behavior of the solution may be 
erroneously predicted. Therefore, the present paper 
brings an alternative analytical solution to this class 
of problems, by completely avoiding the difficulties 
associated with the computation of complex eigen- 
values. and yielding some freedom in selection of the 
basis for the eigenfunction expansions. To achieve this 
goal the ideas in the generalized integral transform 

technique [ 1 Z-211 are further extended. by gathering 
information on the solution of coupled problems [20. 
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211 and nonhomogeneous diffusion problems [22]. 
The proposed approach is not limited to linear situ- 
ations, following the flexibility introduced through 
the generalized integral transform technique [12-141. 
which provides hybrid numerical~analytical solutions 

to nonlinear problems. In order to illustrate this 
approach, an application on contact drying of a 
porous moist sheet is considered more closely, for the 

case of general third kind boundary conditions and 
constant physical properties. A pair of independent 
auxiliary problems for the temperature and moisture 
eigenfunction expansions is chosen. which are of the 
conventional Sturm-Liouvillc type and, therefore, 

involve real quantities only. An infinite system of 
coupled ordinary differential equations for the trans- 
formed potentials then results, upon integral trans- 
formation of the original partial differential equa- 

tions. A sufliciently large finite system, for the required 
accuracy, is then obtained by truncation of the de- 

numerable system at the Nth row and column, which 
can be either analytically or numerically handled 
through widely available scientific subroutines 
libraries [23]. The convergence behavior of the pro- 

posed eigenfunction expansions is here illustrated 
through representative numerical examples and a set 
of benchmark results for reference purposes is 
produced. Previous analytical solutions are criti- 
cally examined, either without any complex eigen- 
values [7] or including one pair of conjugate complex 
roots [IO] 

ANALYSIS 

The proposed approach is here applied to a typical 
heat and mass transfer problem governed by Luikov’s 
equations, related to contact drying of a porous moist 
sheet on a hot plate, as depicted in Fig. I. This drying 
problem is also solved in refs. [7, 81 without con- 
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NOMENCLATURE 

a thermal diffusivity of the porous medium Greek symbols 

a”, diffusion coefficient of moisture in the ;‘” eigenvalues of matrix C, from problem 
porous medium (24b) 

( specific heat of porous medium 6 thermogradient coefficient 
12 heat transfer coefficient E phase change criterion (c = 0 all liquid. 

11 ,I, mass transfer coefficient E = 1 all vapor) 
k thermal conductivity p(,, i, eigenvalues of problems (7) and (8), 

k,, moisture conductivity respectively 
I thickness of porous sheet i,. T, eigenfunctions of problems (7) and (8). 
N order of truncated system respectively 

Y prescribed heat flux r,,o 
i cigenvectors of matrix C, from problem 

1 latent heat of evaporation (24b). 
t time 

T(.u, t) temperature distribution Subscripts 

T, temperature of surrounding air i. ,i order of eigenquantities from problems 

T,, initial temperature distribution (7) and (8) 
U(S. t) moisture distribution k = 1, 2 related to temperature and 

lI* moisture in equilibrium with moisture, respectively 
surrounding air S steady-state solution 

u0 initial moisture distribution h homogeneous problem 

.Y position. LlV averaged (integrated) quantity. 

sideration of the associated complex eigenvatues, and ;IfIz(X, z) c:‘O,(X,T) 
recently by Lobo et ul. [IO] with the inclusion of one iz 

~ = Lu m&T 
_ Ltr Pn “20 I (X T) 

r?X- ’ 
pair ofconjugate roots of the transcendental equation. 
Numerical results from these works were markedly in 0 <Xc I, 5 > 0 (lb) 

different for the smaller values of dimensionless time, subject to the initial conditions 
due to the influence of the complex eigenvalues. Therc- 

fore, the present alternative solution is demonstrated 0,(X.0)=0. 0,(X,0)=0. inOdX<l 

for this same one-dimensional linear problem, to (Ic,d) 

allow for critical and definitive comparisons. The and boundary conditions given by 
problem formulation in dimensionless form is given 

by 17, 81: io, (0,7) 
(7x 

--= -Q; 
PO, (X, T) c”?U, (X, z) 3,(X, t) 

c?T (7X’ 
--EKo pm- ~~. 

(7r (702(0, z) 

in 0 < X< 1. T >O (la) c:X 

_ Pn ~$(a 7) 
(7X 

=o, z>o (1c.f) 

x 

t 
Flow of dry air - 
Heat and moisture transport 

1 t t t t t 

Moist porous sheet 
T(r.t)-Temperature distribution 

u(x.r)-Moisture distribution 

Hot-plate Heat supply rate: q 

FIG. I, Geometry and coordinate system for contact drying of a moist porous sheet 
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ZO,(l,z) 
..-(z-- -Bi,[l--8,(l,Z)] 

+(l -E) KoLuBi,[l-0,(1,t)] = O,? > 0 (lg) 

_ (?fAr) +PI1%(Lr) 
3.X i?X 

+Bi,[l -&(i,r)] = 0, z > 0 (lhf 

where various dimensionless groups are defined as 

(1, (,y, T) = 3;‘” +3! ( dimensionless temperature 
\ 0 

u,-t&t) 
02(X, 5) = pu,;u*- 3 dimensionless moisture 

XZ, dimensionless coordinate 

at 
z = i2, dimensionless time 

LU =: !??I 
n’ 

Luikov number 

Pn = 6 .!,z._To 
u”-u* ’ 

Possnov number 

K* = yp2z, Kossovitch number 
b 0 

Biq = ;, dimensionless heat transfer coefficient 

Bi = hm! m 
k, . 

dimensionless mass transfer coefficient 

Yl 
e = k(T, 2-c) ’ dimensionless heat flux. (2) 

Without loss of generality, system (1) is rewritten 
in a more convenient form as follows : 

dfl,(X,t) 
--~-=a$-&;~, O<X<l, z>o 
i-7 

(34 

-.6_ = Lus2(I, -Lup$?2!!i M,(X 7) 

a7 2X’ 2x2 ’ 

O<X<l, z>o (3b) 

0,(X,0) = Oz(X,O) = 0, 0 < X6 I (3c,d) 

clu, (0,7) ilUz(O, 7) 
____ ~= 

c?x -IQ> ax 
= -PrtQ. 7>0 

(kf) 

PO,(l,z) 
---,-+f3i&(l,z) = si, 

-(l-E)KoLuRi,(l-82(1,~)), 7>0 (3g) 

= si,:-PrzBi,(O,(l,z)-I), t > 0 (3h) 

where, 

rx= IfsKoLuPn, fi=c:KoL~i; (3i.i) 

Si: = Bi,[l-(l-~)!‘nKoLu]. (3k) 

For best computational performance, the boundary 
conditions are made homogeneous by separating out 
the contribution of the steady-state solutions, i.c. 

O~(X,7) = ~~S~~)+~~~(~,T), k = I,2 (4a.b) 

where the steady-state solutions, O,,(X), are obtained 
from neglecting the transient terms in equations 
(3a,b), and directly integrating the resulting ordinary 
differential equations to find 

O,,(X) = (l+PnQ)-PnQX. (5b) 

This separation is essentially aimed at making the 
boundary conditions homogeneous, in order to accel- 
erate the convergence of the eigenfunction expansions. 
especially in the vicinity of the boundaries, and may 
be accomplished by other choices of particular solu- 
tions in more involved situations [ 121. 

The associated homogeneous problem then 
becomes 

(6b) 

4,(x,0) = --o,,(X) ; 

&(X,0) = -O,,(X), 0 < x $ 1 

(fJc) 

(64 

%a 7.) Nh (0,7) _ - =-_-_ =(j 7>0 

r7x FX ’ 
(6e,f) 

= (I -E)KoLuB~,O~,,(I,T.). z > 0 (6g) 

r”U,,(l,z) 
--x- +Bi3&(li7) = -fnBi,Q,,(I.r). 7 > 0. 

(6h) 

Problem (6) above is now solved by following the 
formalism in the generalized integral transform tech- 
nique [12-211, by taking two independent Sturm- 
Liouville type auxiliary problems for temperature and 
moisture. respectively : 

d’+,(X) 
--27 t/&,(x) = 0, 0 < x < 1 

“!qY!!_o. d*,(l) [ Riq/(l)=O 

dX ’ &I’ 4 ’ 

d’I-&I’) 
-d~+K(X)=o, O<X<l 

(7a) 

(7b,c) 

@a) 
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dT,(l) 
dX +si:r,(l) = 0 

(8b) 

(8c) 

The eigenvalue problems (7. 8) allow definition of 
the integral transform pairs below : 

t+b,(X)II,,(X, z) dX, transform 

(9a) 

O,,,(X. T) = )$, .I 2 $,(X)fi,,(s). inverse (9b) 

and. 

r,(X)OZh(X. T) dX, transform 

(IOa) 

O,,,(X.T) = i: 
I 

/_, M,’ 2 
r,(X)~z,(t), inverse (lob) 

where the normalization integrals are obtained from 

M, = 
S’ 

T”(X) dX. ([lb) 
0 

The auxiliary problems chosen can be readily solved 

to yield working expressions for eigenfunctions, eigen- 
values and norms. respectively : 

$,(A’) = cos/~,X; T,(X) = cosi,X (12a,b) 

/l! tan 11, = Bi,, ; E., tan j,, = SiX;, (l&d) 

(12e.f) 

The next step is then to perform the integral trans- 
formation of the original partial differential 
equations. in order to reduce them into an ordinary 

differential system. For this purpose we operate on 
equation (6a) with the operator 

s ’ *‘,dX 
,, A’,’ - 

and on equation (6b) with 

s 
,,I ;;idi 

LO find : 

The untransformed integrals represented by the 
coupling terms are rewritten as shown below for the 
first one in equation (I 3a) : 

i 
’ d’i, + f&h dX2 d/Y’. (l4a) 

Y ” 

The first integral on the right hand side is trans- 
formed into a surface integral, in order to account for 
the boundaries contribution in explicit form, while the 
second integral is evaluated by substituting the inverse 
formula (lob) for &,,(A’, T). to yield : 

-f),,(,.T)"",I' _ 1 
i A;(T2,(~) (14b) 
i- 1 

where. 

A,*, = 
(IL: * ’ 

Iv,’ 2M;‘2 J i,(x)r,(x) dX. (l4c) 
,) 

Similarly, the second untransformed integral in 
equation (13b) is evaluated as 

I ’ 
M’ 1 s 

r (“II,, 
dX 

,, ’ (2X’ 

i: B:fl, ,(T) ( 144 

where. 
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After substitution of equations (14b,d) and also where, 

making use of the boundary conditions (7~ 8c), equa- 
tions (13a,b) are rewritten as : 7, = &i o tij(X) dJ’; .f: = $2 T,(X) dX. 

I S’ S’ I 0 

UI 
,= I 

d%,(r) 
On the other hand, the derivatives at the boundary 

pmdrp +Lui,%-LuPn i B,*,ii,, = h;(z) (15b) 
X = 1 can be given explicitly in terms of the potentials, 

,= I through manipulation of equations (6g,h), in the 

form : 

lwJ(l) %?(l,z) 
m-[-m Yp +Bi,Ozh(l,r) 

N, c?x 1 (15~) 

1 
LuPnl-,(I) 20,,(1,7) 

; -~-[-- MI 2 ---+BizO,,(l,r) 
i;x 1 (l5d) 

In order to complete the assembly of the O.D.E. 

system, the boundary quantities, O,,(l, z) and 

?O,h(l, t) 

?X 
- -Bi,0,,(l,~)+(l-c:)KoLuBi,,O?~(l.T) 

(18a) 

&l(l,r) 

8X 
= -Bi~O,,(l,~)-PnBI’,U,,(l.?). (18b) 

By combining and solving equations (I 6) and (I 8), 
one obtains : 

or, 

must be expressed in terms of the transformed poten- (20a) 

tials, a,,(r). Direct substitution of the inverse formulas da 
(9b, lob) at the boundaries is not, however, rec- o?h(lr7) = -& i; .r’; d;L. (2Ob) 

ommended [ 12,221, since the boundary conditions for 
“I/-I 

the original problem are not necessarily obeyed by the The O.D.E. system for the transformed potentials 

eigenfunctions. Therefore, an alternative procedure is can then be rewritten as : 

followed here, according to the findings in refs. [l2, 
221, by making use of the integral balance equations 

do,,(r) 

to obtain rapidly converging expansions for the 
7 +c(j$a,i-j i: A;&, 

,= I 

boundary potentials. One proceeds by integrating 
over the volume each of the original partial differential =~~11KuLu[(Bi,,-cBi,)s,,(l,~) 

equations (6a,b) to find : 
+F:PnBi‘$,,(l,z)] (21a) 

where the average potentials are defined as +(~--E)KoLuB~~O~~(I,T)]. (21b) 

S’ 

Upon truncation to a sufficiently large finite order, 

L,.(r) = o,,(X,r)dX, k = 1,2 (17a,b) N, for the desired tolerance in the converged poten- 
0 tials, and substitution of equations (20a,b) into the 

and can be computed from direct substitution of the 
system (21) above, the following implicit O.D.E. sys- 

inverse formulae into the above definitions, to yield 
tem results : 

A$+BJ: = 0 (22a) 

Ol,;“(r) = i: JO,,(r) 
- 1 

(17~) or, after inversion of the 2N x 2N matrix A 
,= I 

(174 
where. 

z’+Cy = 0 (22b) 
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I’ = jCT,,(T),. ,IT ,,\l(T),o,,(t). ,(Tz,(T)) ’ ; (22c) 

C=A ‘B. (22d) 

The required initial conditions are represented by 

r(O) = -1’11 : (22e) 

and are obtained from integral transformation of the 
original initial conditions (6c.d), to provide 

(23b) 

and. 

The constant coefficients O.D.E. system formed by 
equations (22b,e) can be readily solved through the 
appropriate matrix eigensystem analysis, in the form 

;(*) = ; (‘,,c ‘,,Y<“J’ (24a) 
II I 

where eigenvalues, ;‘,,. and cigenvectors, <““, arc 
obtained from the algebraic problem 

(C-71)$ = 0 (24b) 

and the constants c,,‘s are evaluated so as to satisfy the 
initial conditions (22e), by solving a second algebraic 

problem 

The solution of problems (24b,c) is accurately and 
automatically accomplished through well-established 
algorithms readily available in scientific subroutines 
libraries. such as ref. [23]. Alternatively. one can 

directly solve the initial value problem (22b.e) through 
also readily accessible solvers for stiff O.D.E. systems 

[23]. 
Once the solution vector of transformed potentials. 

2(t). is evaluated at any time 7 of interest. the inverse 

formulae (9b) and (lob) arc recalled to provide the 
original potentials at any position X desired. For 
improved convergence behavior of these cigcn- 
function expansions, especially in the vicinity of the 

boundary X = I. the same procedure utilized above 
to compute the boundary potentials, Oih ( 1, t). can bc 
extended to the whole medium, as suggested in refs. 
[12. 221. The resulting alternative expressions for 
OL,,(X, T). which can be derived in a straightforward 
way as now demonstrated, can then considerably 
cnhancc the convcrgcnce rates of the infinite 
summations. 

First, both original P.D.E.‘s are integrated over the 
region from 0 to X, providing : 

&,(X.T) = iO,,(X.T) _,jfy"(X.T) 

iT 
2. 

?X (7x 
(25a) 

where the quantities aL,,, (X. t) arc defined as 

I 

i 
ri;.;l, (X, z) = (),,(I”, T) d/Y’, k = 1.2. (25c,d) 

0 

Equations (25a.b) are once more integrated over 
the region. this time from X to I. to yield : 

~i[~l,,,(l.~)--o~~(X,~)J (26a) 

-LuPn[(l,,(l,~)-(l,,(X,z)] (26b) 

where, 

Z,..,, (I(. 7) = 
S' 

&,,,(X’,T)dX’. li = 1.2. (26c,d) 
.\ 

The quantities above, zr,.,,. can be directly expressed 
in terms of the transformed potentials, by plugging in 

the inverse formulae, equations (9b) and (lob). to 
obtain : 

I 

z,.:,,(x. T) = 1 p,(x)o,,(T) (27a) 
i- 1 

k,,(XJ) = i; B:(x)&,(t) (27b) 
i-1 

where, 

I A 
P,(X) = 

si 
$,(X”) dX”dX’ (27c) 

\ 
,, 

\ \ 
P?(X) = 

H 
I-,(X”) dX”dX’. (27d) 

! 0 

Therefore, the dcsircd potentials. (jLr,(X, T), 211 any 
arbitrary position and time, are obtained from solu- 
tion of the two algebraic equations (26a,b). and the 
following working expressions result : 

where the boundary potentials are directly evaluated 
from the relations previously established, equations 
(20a.b). Similarly, if eventually needed, the derivatives 
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within the medium can be evaluated from solution of 
equations (25a,b), and at the boundary from equa- 

tions (18a,b). 
Finally, the dimensionless temperature and moisture 

profiles are computed from equations (4a,b). 

RESULTS AND DISCUSSION 

For comparison purposes, the same numerical 
example considered in refs. [7, 8, lo] is here im- 
plemented. The various parameters assume the fol- 

lowing numerical values : Lu = 0.4, Pn = 0.6, (-: = 0.2, 
Ko = 5.0, Bi, = Bi, = 2.5, and Q = 0.9. The trunc- 

ated system was taken with an order N < 40, which 
was more than sufficient to provide several converged 

significant digits on the final results at different values 
of dimensionless time, z = 0.05, 0.1, 0.2. 0.4, 0.8, 1.6, 
3.2 and 6.4. Computation of one such complete set of 
results takes about 40 s on an IBM 4381 mainframe 

computer. 
In order to illustrate the excellent convergence 

characteristics of the proposed eigenfunction expan- 

sions, represented by equations (28a,b), Table 1 is 
presented, showing both temperature and moisture 
distributions at different times, 7 = 0.1, 0.4 and 0.8 
and for increasing truncation orders, N = 5, 10, 20 
and 30. The good convergence rates are clearly notice- 
able ; even for the smaller value of 7 = 0.1, the dimen- 

sionless temperature is essentially fully converged with 
N as low as IO, while the dimensionless moisture 

requires a few more terms, somewhere in between IO 
and 20. For the higher values of z = 0.8, 1.6, 3.2 and 

6.4, N = 5 is more than enough to reach the four 
digits accuracy shown here. The columns for N = 30 
in Table I, in which the results are fully converged to 
all four significant digits presented, provide a set of 
benchmark results for future reference and validation 
of numerical schemes. 

Attention is now focused in the critical inspection 

of previous analytical solutions [7, 8, IO] based on 
application of the classical integral transform method 

[8], which requires in this case the analysis of a coupled 
eigenvalue problem that may involve a certain number 
of complex eigenvalues. This fact was not observed in 

the early contributions [7], until the work of Rossen 
and Hayakawa [9] appeared. Then. Lobo et al. [IO] 

studied the influence of one pair of complex conjugate 

eigenvalues in the accuracy of temperature and moist- 

ure distributions, and concluded that especially for 
shorter times the expansions based on real eigenvalues 
could only provide completely erroneous predictions. 
Similar conclusions were reached in ref. [I I], again 
with consideration of one single pair of complex eigen- 

values. One advantage of the present approach is that 
the computation of complex eigenvalues is completely 
bypassed, and the computational implementation is 

quite straightforward, allowing for fully converged 
results at any prescribed accuracy. Therefore, to offer 
a more definitive analysis of the loss of precision in 
previous solutions and to access the influence of com- 

plex eigenvalues, Figs. 2(a) and (b) show, respectively, 

Table 1. Convergence behavior and reference results for temperature and moisture distributions (La = 0.4. Pn = 0.6, t: = 0.2, 
Ku = 5.0, Bi,, = 2.5, si, = 2.5, Q = 0.9) 

t = 0.1 

n,(x r) (1,(X r) 
X\N 5 IO 20 30 X\N 5 IO 20 30 
0.0 0.285 1 0.2850 0.2850 0.2850 0.0 0.07727 0.07725 0.07726 0.07726 
0.2 0.1332 0.1330 0.1330 0.1330 0.2 0.00978 0.00987 0.00988 0.00988 
0.4 0.02412 0.02408 0.02406 0.02405 0.4 0.00363 0.00368 0.00370 0.00370 
0.6 -0.06171 -0.06179 -0.06179 -0.06179 0.6 0.03389 0.0343 1 0.03436 0.03436 
0.8 -0.1204 -0.1197 -0.1196 -0.1196 0.8 0.1295 0.1304 0.1305 0.1305 
1.0 -0.1112 -0.1106 -0.1106 -0.1106 1.0 0.3759 0.3769 0.3770 0.3770 

T = 0.4 

X\N 5 10 20 30 8N 5 10 20 30 
0.0 0.4856 0.4858 0.4858 0.4859 0.0 0.2014 0.2014 0.2014 0.2014 
0.2 0.3281 0.3283 0.3283 0.3283 0.2 0.1267 0.1269 0.1269 0.1269 
0.4 0.2165 0.2168 0.2168 0.2168 0.4 0.1213 0.1214 0.1215 0.1215 
0.6 0.1536 0.1539 0.1539 0.1539 0.6 0.1903 0.1906 0.1906 0.1906 
0.8 0.1416 0.1420 0.1420 0.1420 0.8 0.3388 0.3389 0.3389 0.3389 
I .o 0.1791 0.1794 0.1794 0.1794 1.0 0.5616 0.5618 0.5618 0.5618 

5 = 0.8 

X?N 5 10 20 30 X\N 5 10 20 30 
0.0 0.7769 0.7771 0.7771 0.7771 0.0 0.3709 0.3710 0.3710 0.3710 
0.2 0.6193 0.6196 0.6196 0.6196 0.2 0.2980 0.2982 0.2982 0.2982 
0.4 0.5061 0.5063 0.5064 0.5064 0.4 0.2945 0.2946 0.2946 0.2946 
0.6 0.4354 0.4356 0.4356 0.4356 0.6 0.3558 0.3569 0.3569 0.3569 
0.8 0.4035 0.4037 0.4037 0.4037 0.8 0.478 1 0.4780 0.4780 0.4780 
I .o 0.4043 0.4044 0.4044 0.4044 1 .o 0.6457 0.6458 0.6458 0.6458 
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Ftc;. 2(a). Comparison of dimensionless temperature dis- 
tributions with previously reported analytical solutions 
(Lu = 0.4. Pn = 0.6. t: = (),2? K0 = 5.0. L3i,,, = 2.5, si,, = 2.5, 

p = 0.9). 

FIG. 2(b). Comparison of dimensionless moisture distribu- 
tions with previously reported analytical solutions (Lu = 0.4, 
f!? = 0.6, i: = 0.2. Ko = 5.0, Bi,,, = 2.5. si,, = 2.5. Q = 0.9). 

dimensionless temperature and moisture distributions 
for different times, z = 0.05. 0.2, and I .6. Besides the 

results from the approach here proposed, the results 
from ref. [7]. which does not account for complex 
eigenvalues. and from ref. [lo], which includes one 

pair of complex conjugate roots, are also plotted. For 
larger values of r all the solutions provide essentially 
the same results, but as t is decreased the effect of the 
complex cigenvalues become more and more relevant. 
For T = 0.2 the results from ref. [7] are already mean- 
ingless. while for T = 0.05. the inclusion of one pair 
of complex roots [IO], to the present graph scale. 
seems enough to provide a good agreement with the 
fully converged results. Additional complex roots 
might be required for smaller values of T. The same 
behavior is observed in both temperature and moist- 
ure distributions. 

The prcscnt analytical approach has been suc- 

cessfully applied to a classical problem in coupled heat 
and mass transfer, represented by Luikov’s equations 
for drying in capillary porous media. It offers an intcr- 
esting ahcrnativc in practical applicalions as well as 
in extensions to more realistic situations of nonlinear 
problems and tnultidimensional gcomctrics [24. 751. 
by combining previous recent dcvclopmcnts on the 
generalized integral transform technique [13~ 21). Pot 

instance. variable transport cocfhcicnts can bc 
accounted for by incorporating the extension to non- 
linear problems discussed in refs. [IL 141. Quite 
rcccntly. the present approach was utilized in the solu- 

tion of drying problems involving radiative boundary 

conditions [26], which illustrates the potential of the 
method to handle more involved applications. 
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