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Abstract—The Luikov system of equations for coupled heat and mass transfer within capillary porous
bodies is analytically handled through application of the generalized integral transform technique. The
problem of temperature and moisture distribution during contact drying of a moist porous sheet is
considered to illustrate the development of the present approach. The classical coupled auxiliary problem
with the related complex eigenvalues is completely avoided and. instead, two decoupled eigenvalue problems
for temperature and moisture are chosen, which are of the conventional Sturm-Liouville type. A set of
benchmark results is generated and critically compared with previously reported approximate solutions.

INTRODUCTION

THE so-carLLED Luikov’s equations provide a well-
established model for the analysis of various sim-
ultaneous heat and mass diffusion problems in capil-
lary porous media, and have been reviewed in different
sources [1-4]. Pertinent applications include the dry-
ing of wood, ceramics and bricks, moisture migration
in soils. and the analysis of heat pipe wicks. In the
casc of a linear formulation for constant transport
coefficients, analytical solutions were proposed over
the years. based on both the Laplace transform
method [2, 5] and the classical integral transform
method [6-8]. It was later observed that the numerical
results obtained through such analysis could be in
error, due to the existence of complex eigenvalues in
the associated coupled auxiliary problem [9, 10].
Then, quite recently, the effects of including one pair
of complex conjugate eigenvalues in the analytical
infinite summations was critically investigated [10,
11]. Specially for shorter times, the nced for con-
sidering the complex eigenvalues is crucial, since even
the qualitative behavior of the solution may be
crroneously predicted. Therefore, the present paper
brings an alternative analytical solution to this class
of problems, by completely avoiding the difficulties
associated with the computation of complex cigen-
values, and yielding some freedom in selection of the
basis for the eigenfunction expansions. To achieve this
goal the ideas in the generalized integral transform
technique [12-21] are further extended, by gathering
information on the solution of coupled problems [20,
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21] and nonhomogeneous diffusion problems [22].
The proposed approach is not limited to linear situ-
ations, following the flexibility introduced through
the generalized integral transform technique [12-14],
which provides hybrid numerical-analytical solutions
to nonlinear problems. In order to illustrate this
approach, an application on contact drying of a
porous moist sheet is considered more closely, for the
case of general third kind boundary conditions and
constant physical properties. A pair of independent
auxiliary problems for the temperature and moisture
eigenfunction expansions is chosen, which are of the
conventional Sturm-Liouville type and, therefore,
involve real quantities only. An infinite system of
coupled ordinary differential equations for the trans-
formed potentials then results, upon integral trans-
formation of the original partial differential equa-
tions. A sufficiently large finite system, for the required
accuracy, is then obtained by truncation of the de-
numecrable system at the Nth row and column, which
can be cither analytically or numerically handled
through widely available scientific subroutines
libraries [23]. The convergence behavior of the pro-
posed ecigenfunction expansions is here illustrated
through represcntative numerical cxamples and a set
of benchmark results for refercnce purposes is
produced. Previous analytical solutions are criti-
cally examined, either without any complex cigen-
values [7] or including onc pair of conjugate complex
roots [10].

ANALYSIS

The proposed approach is here applied to a typical
heat and mass transfer problem governed by Luikov’s
equations, related to contact drying of a porous moist
sheet on a hot plate, as depicted in Fig. 1. This drying
problem is also solved in refs. [7. 8] without con-
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NOMENCLATURE

a thermal diffusivity of the porous medium  Greek symbols
. diffusion coefficient of moisture in the In eigenvalues of matrix C, from problem

porous medium (24b)
¢ specific heat of porous medium 0 thermogradient coefficient
h heat transfer coefficient £ phase change criterion (¢ = 0 all liquid.
A mass transfer coeflicient ¢ =1 all vapor)
k thermal conductivity Ui, 4; eigenvalues of problems (7) and (8),
K moisture conductivity respectively
/ thickness of porous sheet Y. I'; eigenfunctions of problems (7) and (8).
N order of truncated system respectively
q prescribed heat flux £ cigenvectors of matrix C, from problem
7 latent heat of evaporation (24b).
t time
T(x,t) temperature distribution Subscripts
T, temperature of surrounding air ij order of eigenquantities from problems
T, initial temperature distribution (7) and (8)
u(x, t) moisture distribution k=1,2 related to temperature and
u* moisture in equilibrium with moisture, respectively

surrounding air s steady-state solution
U initial moisture distribution h homogeneous problem
X position. av averaged (integrated) quantity.

sideration of the associated complex eigenvalues, and
recently by Lobo et al. [10] with the inclusion of one
pair of conjugate roots of the transcendental equation.
Numerical results from these works were markedly
different for the smaller values of dimensionless time,
due to the influence of the complex eigenvalues. There-
fore, the present alternative solution is demonstrated
for this same one-dimensional lincar problem, to
allow for critical and definitive comparisons. The
problem formulation in dimensionless form is given
by [7, 8] :

20,(X.1) _ 3%0,(X,1) 30,(X,7)
oo axr T T
nldl<X<l1, >0 (la)

! $ ¢

20,(X, 1) _ Luaz—()Z(/X’T) _y (73()»[7()(, 7)

A Pp—— i
it ox’ HET axe
mi<X<l1, >0 (Ib)
subject to the initial conditions
0,(X.00=0, 0,(X,00=0, n0<X<I
(le,d)
and boundary conditions given by
¢0,(0,1) )
ox — Y
20,(0,7) ¢0,(0,71)
2 _pp il = 1
oY Ay 0, t>0 (lcf)

Flow of dry air —
Heat and moisture transport

$ t b

Moist porous sheet

T(x,t)-Temperature distribution

u(x,t)-Moisture distribution

o] I

Hot-plate

T T !

Heat supply rate: ¢

FiG. 1. Geometry and coordinate system for contact drying of a moist porous sheet.
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o011y .
-—«‘FX— —Bi,[1-0,(1,0]
+(1—&) Ko Lu Bi,[1—0,(1,0)] =0,1>0 (g
00:01,) , 6,(1,7)
T Tax ox

+ Bi [1-0:(1,1)] =0,

where various dimensionless groups are defined as

>0 (1h)

T(x,t)—T . .
0,(X, 1) = Hen=To dimensionless temperature
T,—T,
ulx,t . . .
0,{X, 1) = ——(w,;w) , dimensionless moisture
o U
x . . .
X = T dimensionless coordinate
al R B .
=3 dimensionless time
By, .
Lu= e Luikov number
T,~T
Pn = 5_;_.‘_“.;2. , Possnov number
Ug—u
Ko=" to — 1" K. itch be
9 = -+ ————_ Kossovitch number
c T,—T,
) . . .
Bi, = e dimensionless heat transfer coefficient
. byl . . .
Bi, = g dimensionless mass transfer coefficient
m
0 ol dimensionless heat flux. (2)
= ——"-—— _ dimensionless heat flux.
k(T —T,)

Without loss of generality, system (1) is rewritten
in a more convenient form as follows:

f{}‘(X’Z} 5 0, 0, O< X <1 0
o YaxT B"Xz’ <A<boT>
(32)
GOQ(X,I) 220, 0° 0I
ot e s —LuPn ax
D<X<l, >0 (3b)
0,(X.0)=0,(X,00)=0, 0<X<1 (3cd)
20,01 0,(0,7)
ax =@ 0X<~—PnQ, >0
(3e,0)
() 1,
g ( T)—FBzO,(l ) =
—(1—&) Ko Lu Bi,(1-0,(1,7)), t>0 (3g)
08,1
——~»('~T—)+B i*0,(1,7)
= Bi} -~ PnBi(0,(1,1)—1), 1>0 (3h)
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where,

(3.3
3k

o= 1+¢Ko LuPn;
= Bi.[1—(1—¢&) Pn Ko Luj.

B=¢KolLu,
Bi%

For best computational performance, the boundary
conditions are made homogeneous by separating out
the contribution of the steady-state solutions, i.c.

0.X, 0 =0 (XD)+0,.(X. 1), k=12 (4ab)

where the steady-state solutions, 8,,(X), are obtained
from neglecting the transient terms in equations
(3a,b), and directly integrating the resulting ordinary
differential equations to find

0,(X) = (1 + %{.ﬁiﬂ Q) —0X  (5a)

q

O (X) = (1+PnQ)—PnQX. (5b)

This separation is essentially aimed at making the
boundary conditions homogeneous, in order to accel-
erate the convergence of the eigenfunction expansions,
especially in the vicinity of the boundaries, and may
be accomplished by other choices of particular solu-
tions in more involved situations [12].

The associated homogeneous problem then
becomes
@Olh(X T) 529“, (’77202{‘
R A S
804,(X, 1) %0y, %0,
= LuFXT —Lu Pn axe (6b)
01X, 0) = —0,,(X); (6c)
0 (X,0) = —0,(X), 00X (6d)
001,(0,7) _ 00x,(0,7)
ax - = 5r =0, 7>0 (6e.0)
(7!'3”,(1 z)
Y +Bi 0,,(1,7)
= (1—¢) Ko Lu Bi,,0,,(1,7), 7>0 (6g)
0y (1,7) .
—*;X, i%0x,(1,7) = — PnBi,0y,(1,7), 7> 0.
(6h)

Problem (6) above is now solved by following the
formalism in the generalized integral transform tech-
nique [12-21], by taking two independent Sturm-
Liouville type auxiliary problems for temperature and
moisture, respectively:

dy (X

ax? +utP(X)=0, 0<X<1 (72
dn//(O) dir, (1

dx =0; »‘g)({)+qull/(l)—0 (7b,c)
d

dX() =0, 0<X<1 {8a)
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a0 _y. $b
ay 9 (8b)
ar (1

DL grr ) =0, (8¢)

dx

The eigenvalue problems (7, 8) allow definition of

the integral transform pairs below :

_ 1 !
0,(1) = Vi j U (X)0,,(X,7)dX, transform
i 0

(9a)

5.

Y "V?l:t//,‘(/\”)ﬁu(r)., inverse (9b)

=1t

(X, 1) =
and.

_ 1 !
0,(1) = M lj [(X)0(X.7)dX, transform
! 0
(10a)

s

1 =
> Mi,jrr(X)()g[(T). inverse (10b)

i=1

Oy(X.7) =
where the normalization integrals are obtained from

N, =j yiX)dx (11a)

L
M,-zj 7 (x)dX. (11b)
]
The auxiliary problems chosen can be readily solved
to yield working expressions for eigenfunctions, eigen-
values and norms, respectively:

Yi(X)=cos X; T(X)=cosiX (12a,b)

pitanp, = Biy; Astanz, = Bi% (12¢,d)

\_1’1 Bi, | M_l . Bi¥*
N7y +;1 +BiI]T T2 S+ BIE |

(12e.f)

The next step is then to perform the intcgral trans-
formation of the original partial differential
equations, in order to reduce them into an ordinary
differential system. For this purpose we operate on
cquation (6a) with the operator

|
Ly
[t
and on equation (6b) with
i
r
L dX,
J:) M/,I 2

to find :

J. W. RIBEIRO ¢f al.

dD(;’T(T) ey
o )
"N/,'ffj w,‘u(/“dx (13a)
d(7£,7(r) + Lu a0,
dr

Lu Pn ‘r(’z(),hdy b
M), Tox: T (13b)

The untransformed integrals represented by the
coupling terms are rewritten as shown below for the
first one in equation (13a):

L, o2, Ay
J pr -\X dx J'“ [lpr ox: (~h dx? dX

1 dl
+ [ Oan Vi dx.

qx? (14a)

The first integral on the right hand side is trans-
formed into a surface integral, in order to account for
the boundaries contribution in explicit form, while the
second integral is evaluated by substituting the inverse
formula (10b) for 0,,(X, 7). to yicld:

1 20
N f) oAy

X
07,, 1.7 ) dyr (1)
[wm‘ T 'fu]
~ S AX0(0) (14b)
=
where,
W

1
A:’;:N,"ZM/M J“ v (O (X)) dx. (14¢)
Similarly, the second untransformed integral in
equation (13b) is evaluated as

] oA,
my ), ey 94X
1 0y, (1. 7) dr(l)
:Milf[rl'(]) '(.,X —0,,(1,7) dx A
— 5 B0, (1) (14d)
i
where,
. |
A7
B = MITND ﬁ LX)y AX)dXx.  (l4e)
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After substitution of equations (i4b,d) and also
making use of the boundary conditions (7c, 8c), equa-
tions (13a,b) are rewritten as:

da(;;@ #291/~/32 a3l =g (152)
gpéff—) + Luii 05— Lu Pn ; BX0,, = h(x) (15b)
wherc,
Gi(x) = a;f, I(E) [‘0”;(; 2 Biqﬁlh(l,f)}
I [f"ﬁ(%) . Biqozh(l,r)} (150)
R =5 [‘» P9 | g, r)}

Lupnr(l)[ao,,,(m)

— ox +Bi,’§01h(1,r)j|. (15d)

M2

In order to complete the assembly of the O.D.E.
system, the boundary quantities, 0, (1, t) and

0 (1,7)

= 1,2
ax (k=1,2),

must be expressed in terms of the transformed poten-
tials, 8,;(t). Direct substitution of the inverse formulas
(9b, 10b) at the boundaries is not, however, rec-
ommended [12, 22], since the boundary conditions for
the original problem are not necessarily obeyed by the
eigenfunctions. Therefore, an alternative procedure is
followed here, according to the findings in refs. [12,
22], by making use of the integral balance equations
to obtain rapidly converging expansions for the
boundary potentials. One proceeds by integrating
over the volume each of the original partial differential
equations (6a,b) to find:

df, .. (1)

(1, 7) 005,(1,7)

e SRS S
do, ., (1) 00, (1, 1) d0,,(1, 1)
% - u- i — Lu Pn T (16b)

where the average potentials are defined as

1
(),\,‘,\,(t)zjx (X, 1)dX, k=12 (17a,b)
o

and can be computed [rom direct substitution of the
inverse formulae into the above definitions, to yield

X

Ol.uv(r) = Z f:g_

(17¢)

Dra (1) = Z T*05(v) (17d)
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where,

1 1
Ji= Nlaj Y(X)dx; f; —AT’J I,(X)dx.

(17e.f)

On the other hand, the derivatives at the boundary
X = 1 can be given explicitly in terms of the potentials,
through manipulation of equations (6g.h), in the
form:

20, (1
m%g(’f) = — Bifn(1.7)+ (1 —£) Ko Lu Biy 0s (1. 7)
(18a)
0 (1.
¢ r(x D o B0~ PnBi0n(l.7).  (18D)

By combining and solving equations (16) and (18),
one obtains:

1, L|dbh +Ko 40 (19a)
Ow(1,7) = qu dz dr
1 de,,,
O (1, 7) = _z;lBl: d (19b)

or,

1| & ~dd, & 240y,
0in(1,7) = Bl[;l.qt +Koy f dr:|

i=1

~ I B, 5 7 (20b)

m j=1

Ox(1,7) =

The O.D.E. system for the transformed potentials
can then be rewritten as:

dD AT 2 c ]
TIT() +(x‘ui‘01,~—ﬁ Z A,*,Oz,
=1

%ﬁ; Ko Lu [(Biy,—& Bi,)0y,(1,7)
+&PnBify(1, 0] (21a)
ﬂér( Y Luii0, — Lu Pn Z B0,
(1) .
= — }T/IﬁLuPn [Bi%0,,(1,1)
+(1—¢)Ko Lu Bi,,05,(1,1)]. (21b)

Upon truncation to a sufficiently large finite order,
N, for the desired tolerance in the converged poten-
tials, and substitution of equations (20a,b) into the
system (21) above, the following implicit O.D.E. sys-
tem results:

Ay +By =0 (22a)
or, after inversion of the 2N x 2N matrix A
3 +Cp=0 (22b)

where,
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y= ‘{{71 (1), 0 (0, 0 (0. (7:‘,\,(1)}"

(22¢)
C=A 'B (22d)

The required initial conditions are represented by
1(0) = ,“_'0 (22e)

and are obtained from integral transformation of the
original initial conditions (6¢.d), to provide

_ -1 !
k= N"ZJ (X (X)dx (23a)

BN 0

_ -1 |
Fr=__, j 02 (X)T,(X) dX (23b)

M, 0

and,

Pom (Fro . Fy FALFET. (230)

The constant cocefficients O.D.E. system formed by
equations (22b,e) can be readily solved through the
appropriate matrix eigensystem analysis, in the form

y)y= Y ¢,c g (24a)

where eigenvalues, 7,. and cigenvectors, ", are
obtained from the algebraic problem
(C—yhE=0 (24b)

and the constants ¢,’s are evaluated so as to satisfy the
initial conditions (22¢), by solving a second algebraic
problem

2N
L g
Z G5 = Ve

n—1

(24¢)

The solution of problems (24b.c) is accurately and
automatically accomplished through well-established
algorithms readily available in scientific subroutines
libraries, such as ref. [23]. Alternatively, one can
directly solve the initial value problem (22b,e) through
also readily accessible solvers for stiff O.D.E. systems
[23].

Once the solution vector of transformed potentials,
(1), is evaluated at any time 7 of interest, the inverse
formulae (9b) and (10b) are recalled to provide the
original potentials at any position X desired. For
improved convergence behavior of these eigen-
function expansions, especially in the vicinity of the
boundary X = I, the same procedure utilized above
to compute the boundary potentials, 0y, (1, ), can be
extended to the whole medium, as suggested in refs.
[12, 22]. The resulting alternative expressions for
0 (X, ©), which can be derived in a straightforward
way as now demonstrated, can then considerably
cnhance the convergence rates of the infinite
summations.

First, both original P.D.E.’s are integrated over the
region from 0 to X, providing

(ﬂ"ﬁm\ (X{, 7-') (0111(X )

(()‘)h(/\/ T)
‘T X St

(25a)

J. W. RIBEIRO ¢/ dal.

ar(r)gh(Xa 7) —fuPn ¢0,, (X, 1)

T X 5.4
(25b)

where the quantities 0, . (X, 1) arc defined as

.
(LJXJ)zj Oan(X.7)dX’, k=12 (25¢.d)
0

Equations (25a,b) are once more integrated over
the region. this time from X to 1, to yield:

0, (X,
D 00 0 (X))

= Pl0n (1. 1) —04(X,D)] (26a)
0y, (X.7)
= Lu[th,(1,7) — 0., (X.7)]
—LuPn[0,,(1,1)—0,,(X,7)] (26b)
where,
= ! —~
0, (X.T) :J O (X, 0)dX. k=12 (26¢,d)
X

The quantities above, Dm, can be directly expressed
in terms of the transformed potentials, by plugging in
the inverse formulae, equations (9b) and (10b), to
obtain:

iuxn:Zmew> (27a)
-1
D X.1) = }:waw”u) (27b)
where,
1 A
Euw:f J wAX)AX dY (270)
X [§]
i A
PﬂX):J J I (X" dx"dx’.  (27d)
X 1]

Therefore, the desired potentials, 0, (X, ), at any
arbitrary position and time, are obtained from solu-
tion of the two algebraic equations (26a,b), and the
following working expressions result :

Pn S df, ()
Dw(X, 1) = 0 (1, 0) + Prp—2 ,Z‘| P.(X) dr
d dﬁw(r)
LAY 78:
* Lu (Pn[i @) Z dt (282)

(X, 1) =0, (1, 1)+ - {/3[(%,,()( 7)

dr

— O (1 D)~ ji dq'xt)} (28b)

where the boundary potentials are directly cvaluated
from the relations previously established, equations
(20a.b). Similarly, if eventually needed, the derivatives
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within the medium can be evaluated from solution of
equations. (25a,b), and at the boundary from equa-
tions (18a,b).

Finally, the dimensionless temperature and moisture
profiles are computed from equations (4a,b).

RESULTS AND DISCUSSION

For comparison purposes, the same numerical
example considered in refs. [7, 8, 10] is here im-
plemented. The various parameters assume the fol-
lowing numerical values: Lu = 0.4, Pn = 0.6,¢ = 0.2,
Ko = 5.0, Bi,, = Bi,= 2.5, and Q =0.9. The trunc-
ated system was taken with an order N < 40, which
was more than sufficient to provide several converged
significant digits on the final results at different values
of dimensionless time, t = 0.05, 0.1, 0.2, 0.4, 0.8, 1.6,
3.2 and 6.4. Computation of one such complete set of
results takes about 40 s on an IBM 4381 mainframe
computer.

In order to illustrate the excellent convergence
characteristics of the proposed eigenfunction expan-
sions, represented by equations (28a,b), Table 1 is
presented, showing both temperature and moisture
distributions at different times, T = 0.1, 0.4 and 0.8
and for increasing truncation orders, N =5, 10, 20
and 30. The good convergence rates are clearly notice-
able ; even for the smaller value of 7 = 0.1, the dimen-
sionless temperature is essentially fully converged with
N as low as 10, while the dimensionless moisture
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requires a few more terms, somewhere in between 10
and 20. For the higher values of r = 0.8, 1.6, 3.2 and
6.4, N =5 is more than enough to reach the four
digits accuracy shown here. The columns for ¥ = 30
in Table 1, in which the results are fully converged to
all four significant digits presented, provide a set of
benchmark results for future reference and validation
of numerical schemes.

Attention is now focused in the critical inspection
of previous analytical solutions [7, 8, 10] based on
application of the classical integral transform method
[8], which requires in this case the analysis of a coupled
eigenvalue problem that may involve a certain number
of complex eigenvalues. This fact was not observed in
the early contributions [7], until the work of Rossen
and Hayakawa [9] appeared. Then, Lobo et al. [10]
studied the influence of one pair of complex conjugate
eigenvalues in the accuracy of temperature and moist-
ure distributions, and concluded that especially for
shorter times the expansions based on real eigenvalues
could only provide completely erroneous predictions.
Similar conclusions were reached in ref. [11], again
with consideration of one single pair of complex eigen-
values. One advantage of the present approach is that
the computation of complex eigenvalues is completely
bypassed, and the computational implementation is
quite straightforward, allowing for fully converged
results at any prescribed accuracy. Therefore, to offer
a more definitive analysis of the loss of precision in
previous solutions and to access the influence of com-
plex eigenvalues, Figs. 2(a) and (b) show, respectively,

Table 1. Convergence behavior and reference results for temperature and moisture distributions (Lu = 0.4, Pn = 0.6, ¢ = 0.2,

Ko =50, Bi,, = 2.5,

Bi,=25,0=109)

=01
68,(X,1) 0,(X, 1)

X\N S 10 20 30 X\N 5 10 20 30
0.0 0.2851 0.2850 0.2850 0.2850 0.0 0.07727 0.07725 0.07726 0.07726
0.2 0.1332 0.1330 0.1330 0.1330 0.2 0.00978 0.00987 0.00988 0.00988
0.4 0.02412 0.02408 0.02406 0.02405 0.4 0.00363 0.00368 0.00370 0.00370
0.6 -0.06171 —0.06179 —0.06179 —0.06179 0.6 0.03389 0.03431 0.03436 0.03436
0.8 —0.1204 -0.1197 —0.1196 —0.1196 0.8 0.1295 0.1304 0.1305 0.1305
1.0 —~0.1112 —0.1106 —0.1106 —0.1106 1.0 0.3759 0.3769 0.3770 0.3770

=04

X\N S 10 20 30 X\N 5 10 20 30
0.0 0.4856 0.4858 0.4858 0.4859 0.0 0.2014 0.2014 0.2014 0.2014
0.2 0.3281 0.3283 0.3283 0.3283 0.2 0.1267 0.1269 0.1269 0.1269
0.4 0.2165 0.2168 0.2168 0.2168 0.4 0.1213 0.1214 0.1215 0.1215
0.6 0.1536 0.1539 0.1539 0.1539 0.6 0.1903 0.1906 0.1906 0.1906
0.8 0.1416 0.1420 0.1420 0.1420 0.8 0.3388 0.3389 0.3389 0.3389
1.0 0.1791 0.1794 0.1794 0.1794 1.0 0.5616 0.5618 0.5618 0.5618

=038

X\N S 10 20 30 X\N S 10 20 30
0.0 0.7769 0.7771 0.7771 0.7771 0.0 0.3709 0.3710 0.3710 0.3710
0.2 0.6193 0.6196 0.6196 0.6196 0.2 0.2980 0.2982 0.2982 0.2982
04 0.5061 0.5063 0.5064 0.5064 0.4 0.2945 0.2946 0.2946 0.2946
0.6 0.4354 0.4356 0.4356 0.4356 0.6 0.3558 0.3569 0.3569 0.3569
0.8 0.4035 0.4037 0.4037 0.4037 0.8 0.4781 0.4780 0.4780 0.4780
1.0 0.4043 0.4044 0.4044 1.0 0.6458

0.4044

0.6458 0.6458
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Present

TTT T T T T T T T T I T T T T T T T T

0.00 0.20 0.40 0.60 0.80 1.00

Vi

FiG. 2(a). Comparison of dimensionless temperature dis-
tributions with previously reported analytical solutions

(Lu=04,Pn=10.6,6=02 Ko=50,Bi, =25 Bi,=25,
0 =09).
1.40 -
]; —-— Present
20 e Ref. 10
T Ref. 8
1
1.0 j
. 2.80 z
= : -
; . 0.ed -
_‘C‘J i -
0.40 - /

=020 ST T T T T TR R T T T T PTTT T T VT
0.0 0.20 0.40 0.60 Z.80 1.0

Y

F1G. 2(b). Comparison of dimensionless moisture distribu-
tions with previously reported analytical solutions (Lu = 0.4,
Pn=10.6,c=02 Ko=50, Bi, =25 Bi,=25.0=09).

dimensionless temperature and moisture distributions
for different times, T = 0.05, 0.2, and 1.6. Besides the
results from the approach here proposed, the results
from ref. [7]. which does not account for complex
eigenvalues, and from ref. [10], which includes one
pair of complex conjugate roots, are also plotted. For
larger values of 7 all the solutions provide essentially
the same results, but as 7 is decreased the effect of the
complex cigenvalues become more and more relevant.
For t = 0.2 the results from ref. [7] are already mean-
ingless, while for T = 0.05, the inclusion of one pair
of complex roots [10], to the present graph scale.
seems enough to provide a good agreement with the
fully converged results. Additional complex roots
might be required for smaller values of 7. The same
behavior is observed in both temperature and moist-
ure distributions.

The present analytical approach has been suc-

J. W. RIBEIRO et al.

cessfully applied to a classical problem in coupled heat
and mass transfer, represented by Luikov’s equations
for drying in capillary porous media. It offers an inter-
esting alternative in practical applications as well as
in extensions to more realistic situations of nonlincar
problems and multidimensional gcometries [24. 23].
by combining previous recent developments on the
generalized integral transform technique [12-21). For
instance, variable transport coefficients can be
accounted for by incorporating the extension to non-
linear problems discussed in refs. [12-14]. Quite
recently, the present approach was utilized in the solu-
tion of drying problems involving radiative boundary
conditions [26], which tllustrates the potential of the
method to handic more involved applications.
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